

Software guide for NS-RX231

NS-RX231를 위한 소프트웨어가이드 <IR 리모컨 수신>

목차

1	프로젝트 가져오기	2
	개요	
	소스코드	
	3.1 통신 구조	4
	3.2 소스코드	5
	3.3 detectIR.c	6
4	디버깅	9
5	실행	.10
•	≒ 1⊐ r	11

1 프로젝트 가져오기

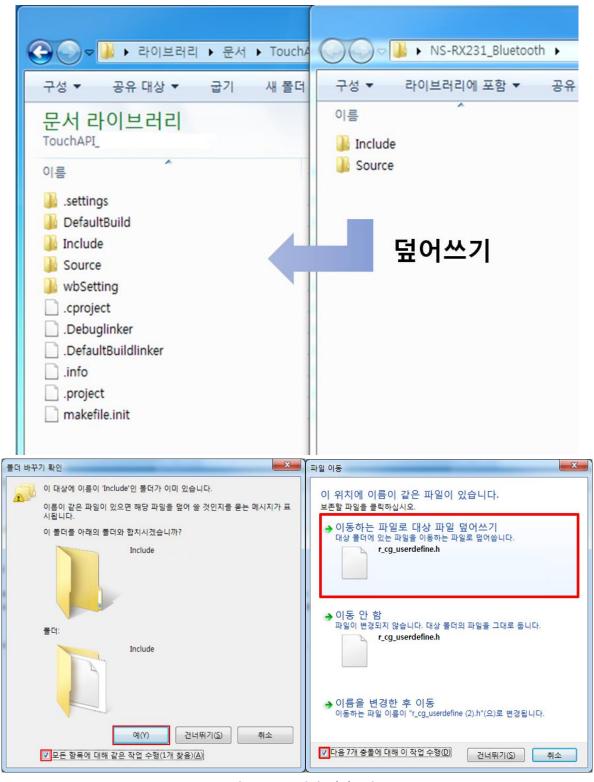


그림 1-1 소스파일 덮어쓰기

첨부된 소스파일을 Workbench6 First step guide 마법사로 만든 프로젝트에 덮어쓰기 한 후, e2studio에서 실행합니다.

2 개요

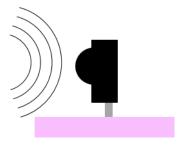


그림 2-1 적외선 수신 소자

IR 수신부는, IR LED로부터 나온 적외선 파장을 받아 신호로 인식하는 기능을 가지고 있습니다. 하지만, 빛을 매체로 하는 통신 특성상 형광등, 햇빛 등 발광체들의 영향을 받아 신호로 인식할 수 있기 때문에 통신 시스템 설계 시에 조심해야 하는 부분 중 하나입니다.

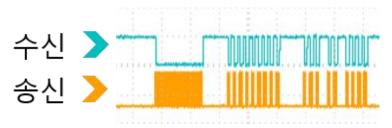


그림 2-2 적외선 통신 파형 예시

수신부의 회로의 출력은 평상시에 1(HIGH)상태로 있다가, 일정한 캐리어 주파수를 가진 적외선 신호를 수신 받으면 0(LOW)로 떨어지고, 아니면 1(HIGH)로 돌아오게 됩니다.

Carrier frequency	30 kHz	TSOP4130
	33 kHz	TSOP4133
	36 kHz	TSOP4136
	38 kHz	TSOP4138
	40 kHz	TSOP4140
	56 kHz	TSOP4156

그림 2-3 캐리어 주파수와 수신 장치의 관계

NS-RX231서 사용하는 적외선 수신 소자 (TSOP4138)는 38kHz의 캐리어 주파수에 대응 한 특성을 가지고 있기 때문에 이 점을 유의하여 설계해야합니다.

자세한 사항은 6. 회로도를 참고하여 주십시오.

본 문서에서는 간단한 리모컨 통신을 구현해보도록 하겠습니다.

3 소스코드

3.1 통신 구조

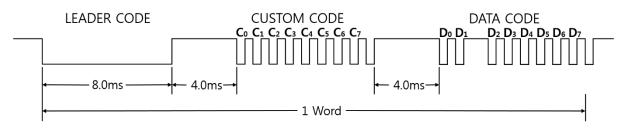


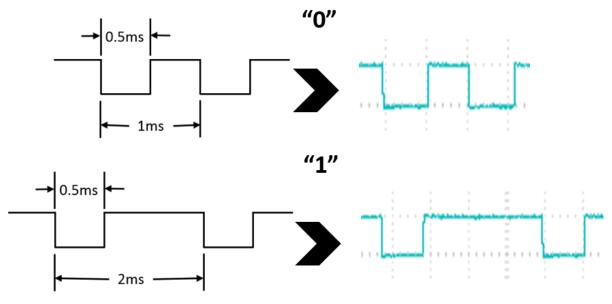
그림 3-1 리모콘 신호 포맷 예

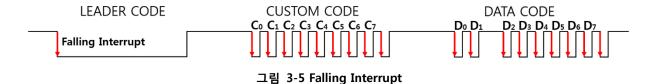
간단한 신호 포맷을 예로 들어 프로젝트를 제작해보았습니다.

신호 포맷은 통신의 시작을 알리는 리더코드 이후에 리모콘 기기의 구분을 위한 사용자 정의 코드(CUSTOM CODE), 데이터를 전달하기 위한 데이터 코드로 구성되어 있습니다.

그림 3-2 적외선 수신소자의 출력 파형

그리고 비트 0과 1의 차이는 다음과 같습니다




그림 3-3 적외선 신호의 0과 1의 차이

3.2 소스코드

```
if(IR_detectStart()){
                                                            START
    while(1U){
         data = IR detectData();
         if(data == 1000){
                                                        CTSU, IRQ, TMR
             cnt = 0;
                                                            Initialize
             break;
                                                             Read
         if(data != 0){
                                                          InterruptFlag
             buf[cnt] = data;
             cnt++;
             data = 0;
                                                       ✓nterruptFlag=12
         }else if(cnt == 18){
             cnt = 0;
                                                               YES
             data = 0;
             FallingFlg = 0;
                                                         IR_detectData
             break;
         }
                                                                       NO
    }
                                                         data < 1000?
    if(IR_checkStartBit(buf[0],240,260)){
                                                                YES
                                                      NO
         data = IR_convertData(buf,1);
                                                                                     Read
         if(IR_checkCustomBit(data,0)){
                                                                                   Touch Data,
                                                           data > 0?
             data = IR_convertData(buf,10);
                                                                YES
             switch (data) {
                                                                                                NO
                  case 40:
                                                                                  TSn = touch?
                      index--;
                                                         buf[cnt] = data
                                                                                        YES
                      break;
                  case 24:
                                                      NO
                                                                                  TSnLED = ON
                      index = 3;
                                                           buffer full
                      break;
                  case 168:
                                                              YES
                      index++;
                                                                                                NO
                                                                                   ERROR?
                      break;
                                                         Check protocol
                                                                                      TYES
             if(index < 0){
                                                                      NO
                  index = 4;
                                                                                     END
                                                         result=TRUE?
             }else if(index > 4){
                  index = 0;
                                                                YES
             PORTB.PODR.BYTE = ledNum[index];
                                                           using data
        }
    }
}
```

그림 3-4 소스코드 및 순서도

수신 신호의 하강 엣지 검출시에 인터럽트가 걸리게 됩니다. 이 때 다음 하강 엣지 검출 인터럽트가 걸릴 때 까지의 시간을 재기 위한 타이머를 동작시킵니다. 타이머는 50us마다 카운트를 1씩증가시키도록 설정되어 있으며 예시로, 리더코드 8ms + 4ms = 12ms에서 타이머의 카운트 240은다음과 같습니다.

240 x 50us = 120 x 100us = 12000us = 12ms

3.3 detectIR.c

IR_convertData	
인수	uint16_t * buf 버퍼
	uint8_t startIndex 시작 인덱스값
반환 값	0 ~ 255
설명	버퍼에 들어있는 8개의 하강 엣지 간격 데이터에서 8비트의 데이터를 산출합니
	다.
	하강 에지 간격 데이터는 시작 인덱스 값에서부터 8개를 사용합니다.
	ex) buf[startIndex]~buf[startIndex+7]
	하강 에지 간격 데이터는 DISTRVAL을 임계 값으로 1과 0을 판별합니다.
	DISTRVAL의 기본값은 40으로 설정되어 있습니다.

코드 예시

```
if(IR_checkStartBit(buf[0],240,260)){    //check LeaderCode

data = IR_convertData(buf,1);    //the index 1~8 buffer data convert to decimal data
}
```

IR_detectStart	R_detectStart		
인수	Void		
반환 값	TRUE 1		
	FALSE 0		
설명	적외선 수신 소자(TSOP4138)에서의 신호의 하강으로 FallingFlg가 1이 됩니다.		
	FallingFlg값을 확인하고, 값이 1이면 FallingFlg값과 타이머의 카운트 값(tmrCnt)		
	을 초기화 한 후 TRUE를 리턴합니다.		

코드 예시

IR_detectData	₹_detectData		
인수	Void		
반환 값	0 ~ 65,535		
설명	FallingFlg값이 다시 1이 될 때까지의 시간을 측정합니다.		
	FallingFlg값이 1이 되면 FallingFlg값을 0으로 클리어하고, 그 동안 측정한 타이		
	머의 카운트 값(tmrCnt)을 리턴합니다.		
	만약 타이머 카운트 값이 1000을 초과하는 경우에는 1000을 반환합니다.		

코드 예시

```
while(1U){
    data = IR_detectData();
    if(data == 1000){
                                           //if counter over the 1000 then; break
        cnt = 0;
        break;
    }
    if(data != 0){
        buf[cnt] = data;
                                           //insert data into a buffer
        cnt++;
        data = 0;
    }else if(cnt == 18){
                                           //buffer maximum then break
        cnt = 0;
        data = 0;
        FallingFlg = 0;
        break;
    }
}
```

IR_checkStartB	IR_checkStartBit		
인수	uint16_t value 비교할 값		
	uint16_t compareMin 비교 조건 최소값		
	uint16_t compareMax 비교 조건 최대값		
반환 값	TRUE 1		
	FALSE 0		
설명	비교 값이 비교 조건의 최소값과 최대값의 사이이면 TRUE를 반환합니다.		

코드 예시

IR_checkCusto	checkCustomBit		
인수	uint16_t value 비교할 값		
	uint8_t compareVal 조건 비교값		
반환 값	TRUE - 1		
	FALSE - 0		
설명	비교값과 비교 조건값이 같으면 TRUE를 반환합니다.		

코드 예시

```
if(IR_checkStartBit(buf[0],250,260)){
    data = binToDec(buf,1);
    if(IR_checkCustomBit(data,0)){
        data = binToDec(buf,10);
        requestData(data);
    }
}

for(i=0;i<18;i++){
    buf[i] = 0;
}</pre>
//check LeaderCode
//the index 1~8 buffer binary data return to decimal data
//check CustomCode
//the index 10~17 buffer binary data return to decimal data
//using data
//initialize buffer
//initialize buffer
//initialize buffer
//initialize buffer
```


4 디버깅

그림 4-1 NS-RX231을 전원 어댑터와 E1디버거를 연결한 모습.

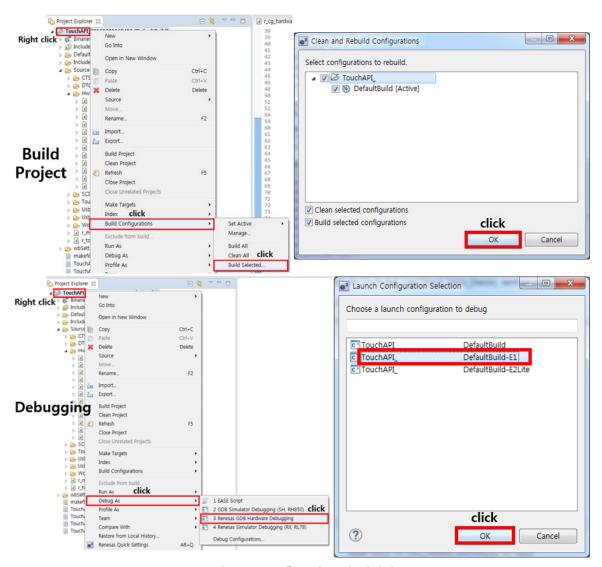
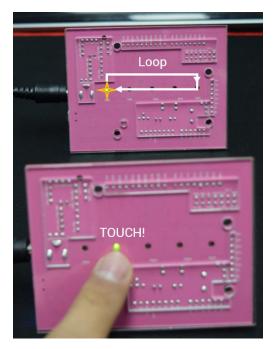
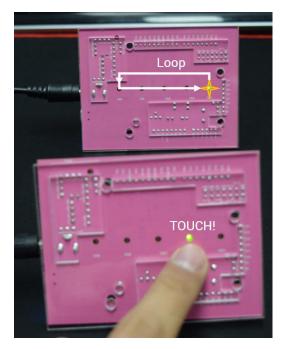




그림 4-2 프로젝트 빌드 및 디버깅

5 실행

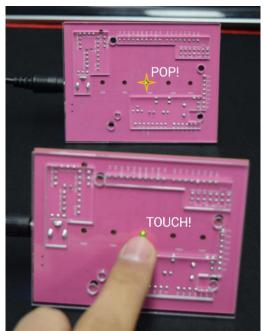


그림 5-1 적외선 수신시 반응

6 회로도

아래 사진은 적외선 리모콘 수신부의 회로도 입니다.

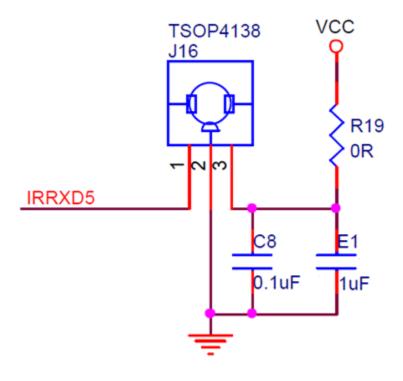


그림 6-1 NS-RX231의 적외선 수신부 회로도